Particle Filters for Real-Time Fault Detection in Planctary Rovers
Richard Dearden and Dan Clancy

Reararcht bstizute por Advanced Computer Scrence . NAY A A Rosearch Center
Madd Stop 26913
Moffert Field, CA 94035 L'5A
Emuil [dearden.clanc}'@ prolemy arcdsd. gov

ABSTRACT

considerable challenge for robotic systems in that they must operate tor
long periods autonomously, or with relatively little intervention. To achieve this, thev need to have
on-board fault detection and diagnosis capabilities in order to determine the actual state of the vehicle.
and decide what actions are safe to perform. Traditional model-based diagnosis techmques are not
suitable tor rovers due to the tight coupling between the vehicle’s performance and its enviromment.
Hybrid diagnosis using particle filters is presented as an altenative. and its strengths and weaknesses
are examined. We also present some extensions to particle filters that are designed to make them
more suitable for use in diagnosis problems.

Planetary rovers provide a

1 INTRODUCTION

for robotic systems in that they must operate for long periods
To achieve this, they need to have on-board fault detection and
f the vehicle, and decide what actions are safe to perform.

Planetary rovers provide a considerable challenge
autonomously, or with relatively little intervention.
diagnosis capabilities in order to determine the actual state o

system given a stream of observations of that system. In
n system [1] that was a part of the Remote Agent
didate hypotheses {in the Remote Agent experiment,
and using the model to predict the expected
then compared with the observations of what

The diagnosis problem is to determine the current state of a
rraditional model-based diagnosis systems such as the Livingsto
experiment [2,3] diagnosis is performed by maintaining a set of can
only a single hypothesis was kept) about the current state of the system,
future state of the system given each candidate. The predicted states are
actually occurred. If the observations are consistent with a particular state that is predicted, that state is kept as a
candidate hypothesis. If they are inconsistent, the candidate is discarded. Traditional diagnosis systems typically use a
logic-based representation, and use monitors 10 translate continuous-valued sensor readings into discrete-valued
variables. The system can then reason about the discrete variables, and compare them with the predictions of the model

using constraint propagation techniques.

Unlike spacecraft, rover performance depends significantly on environmental interactions. The on-board sensors
provide streams of continuous valued data that varies due to noise, but also due to the interaction between the rover and
its environment. For example, a rover may have a sensor that reports the current drawn by a wheel. In normal operation,
this quantity may vary considerably, increasing when the vehicle is climbing a hill, and decreasing on downward slopes.
The diagnosis system needs to be able to distinguish a change in the current drawn due to the terrain being traversed
from a change due to a fault in the wheel. A second issue for rovers is that their weight and power is very tightly
constrained. For this reason, any on-board diagnosis system must be computationally efticient, and should be able to
adapt to variations in processor availability. Ideally, we would also like it to adapt based on its own pertormance,
spending more time on diagnosis when a fault is likely to have occurred, and less time when the system appears to be

operating normally.

A rover's close coupling with its environment poses considerable probiem for traditional model-based diagnosis
systems. A particular sensor reading may be normal under certain environmental conditions, but indicative of a fault in
others, 50 any monitor that translates the sensor reading into a discrete value such as “nominal”, or “off-nominal high”
must be sophisticated enough to take all the environmental conditions into account. This can mean that the diagnosis
problem is etfectively passed off to the monitors—the diagnosis system is very simple, but relies on discrete sensor
values from extremely complex monitors that “diagnose” the interaction between the system and its 2nvironment as part
of translating continuous sensor values into discrete variables. To overcome this problem, we need to reason Jdirectly
with the continuous values we receive trom sensors. That is. our model needs to be a hybrid systenn consisting Hf a set
of discrete modes that the system can be in, along with 4 set of contnuous state variables. The dvnamics of the >ystem

rodesertbed i terms ol set of cquations zoverming the evolution ot the wtate v artabiz and these eqatons wil] he
Dtferent o ditterent modes. I addition, 4 trmsaton tunction desertbes how the o tem moves from one mode to
another. and an observation Tunction detines the Tkelihoad of an observation ween the moede and the values of rthe
swstem s artables,

Fhis hvbrd madel 1s wery similar (o a partially observable Markov decision process 1POMDPYL POMDPs are requently
sed as a4 representation for decision-theoretic planning problems, where the task o "o determine the best action to
perform given the current estimite of the actual state of the system. This estimate, reterred o as the »elief state, 1s
exactly what we would fike o determine i the diagnosis problem. and the problem ol <eepiny the belie!” state updated
15 well understood in the decision theory literature. The helief state is a probability distrtbution over the system states,
and s updated by “pushing it through™ the system model to produce a new prohability distribution over the possible
l'uture state of the system. and then conditioning that distribution on the actual sensor values that were observed to
remove any states inconsistent with the observations, reduce the probability of any state from which the observations
are unlikely, and increase the probability of states that predict the observations well. We will take essentially this

approach to the diagnosis problem in this paper.

Unfortunately, the algorithm we described above for maintaining an accurate belief state is computationally intractable
for the types of problem we are interested in. Since our model contains both discrete and continuous variables, the belief
state is a set of multidimensional probability distributions over the continuous state variables, with one such distribution
for each mode of the system. This distribution may not even be unimodal, so just representing it is a complex problem,
but applying the model to it to predict future state is infeasible due to the severe computational restrictions on-board a
rover. Therefore, an approximation needs to be made. The approach we will take is to use particle filtering [4.5].

A particle filter represents a probability distribution using a set of discrete samples, referred to as particles, each of
which has an associated weight. The set of weighted particles constitutes an approximation to the belief state, and has
the advantage over many approximation methods that it can represent arbitrary distributions. To perform diagnosis, we
apply the predictive model to each particle individually, and then condition on the observations by multiplving the
particle’s weight by the probability of observing the sensor readings if the particle represented the true state of the
system. To prevent a small number of particles from dominating the probability distribution, the particles are then
resampled, with a new set of particles, each of weight one, being constructed by selecting samples randomly based on
their weight from the old set. We will discuss particle filters in more detail in Section 3 below.

Particle filters have already proven very successful for a number of tasks, including robot navigation [6]. Unfortunately,
they are less well suited to diagnosis tasks. This is because the mode transitions that we are most interested in
detecting—namely transitions to fault states—are those with the lowest probability of actually occurring. Thus. there is
a risk that there will be no particle in a fault state when a fault occurs, and so the system will be unable to diagnose the
fault as no particle will predict the observations well. To apply particle filters successfully to rover diagnosis. we will
have to overcome this problem. and we discuss two approaches here. In the first, we increase the number of particles
when the current particles seem to be doing a poor job of predicting the observations. The idea is that when the total
weight of the particles falls, it indicates that no particle is predicting well. [n response to this, the diagnosis system can
suggest that a fault may have occurred. and use additional resources (additional particles) to try to identify the fault.

A more promising approach is to think of the particle filter as a convenient way to divide the available computation
time between individual states. [n this model, the system uses as many particles as computational limitations will allow,
and divides them up between the system modes according to how well cach mode predicts the sensor readings as
before, but also according to how important it is to diagnose each mode. So for example. it a particular mode m predicts
the observations well at present. we would ensure that there are always some particles in a fault state m’ that is
reachable from m with non-zero probability. This means that if the fault did occur, there are zuaranteed to be some
particles in " that would predict the observed behaviour after the fuult.

[n the next section we discuss the rover model in detail. [n Section 3 we describe particle filtering and demonstrate its
weaknesses when applied to diagnosis problems. This paper describes a work in progress, so in Section 4 we will
describe our proposed modifications to the standard particle filter in detail, and in Section 3, present some preliminary
results on real rover data, using a simple version of our proposed approach. The tinal section looks at the relationship
between this work and some previous approaches to this problem, and discusses some future directions for this work.

2 MODELLING A PLANETARY ROVER

\s we aard above, we model 4 rover as a hvbod sstems The discrete component ol the rover's state represents the
vartous operational and fault modes ot the rover, while the continuous state describes the speed ot the wheels, the

current berny drawn by various subsysteins, and so on. Following 171, we model a rover as 1 tuple <M VT E.0> where

the clements o the tuple are as tollows:
e Mis the set ot discrete modes the system can he in. We assume that Was fimite, and write m for an ndividual

wwatem mode.

e Vs the set of variables describing the continuous state of the system.

e Tisa transition function that defines how the system moves (rom one mode to another over um
Pr,(m.m | for the probability that the system moves trom mode /n to mode " We may also include a second

transition function Prym.c.m’) which is used when an action . occurs. This gives the probability of moving

e. We wnte

from s to m’ when action « is executed.

£ 15 a set of equations that describe the evolution ot the continuous variables over time. The equations that
apply uat a given time potentially depend on the system mode. so we write £, for the equations that apply in
mode m. These equations will in general include a noise term to account for random variations in the state
variables. Here we will assume Gaussian noise, with the parameters of the Gaussian determined individually
for each equation.

O is a function mapping the system state into observations. We will assume that the observable system
characteristics are some subset of the system variables V, with their values corrupted by Gaussian noise (again
with parameters that may be a function of the variable, and the system mode), so we write Ofv,m) for the
observed value of some variable v in mode m.

[n addition to these, we will write Pr(s’|s) for the probability distribution over future states s’ given some state s, where
s and s are hybrid states, so Pr(s'js) includes both the distrnibution over the tuture mode given by Prym "Im), and the

distributions over the continuous variables given by £,.

The diagnosis problem now becomes the task of determining the current mode m that the system is in. and the values of
all the state variables in V. We will assume for the rest of this paper that all the state variables are observable, that the
problem of tracking their values through the noise is relatively straightforward (if the noise in the observations
overwhelms the true values of the variables, we have little chance to determine the system mode), and assume that the
diagnosis problem is to determine the mode only. Note that the particle tilter approach we describe does determine the
most likely value for the system variables as well as estimating the mode.

For a system as complex as a rover, we would in general take a component-based approach to modelling, where each
component (for example, a wheel) is modelled separately and the complete model is the cross-product of its
components. Since each component has much simpler dynamics, and typically a smaller set of discrete modes of
operation, this makes the modelling task much easier, but it also simplifies diagnosis by reducing the number of faults
that need to be considered to only those in components that aren't behaving nominally. Of course, we can expect 2
certain amount of dependency in a component-based model (for example, we would expect each wheel to be moving at
approximately the same speed in most circumstances). Taking advantage of these dependencies allows us to simplify
the diagnosis problem in some cases, for example by identifying a wheel that is faulty because its behaviour doesa’t
match that of the other wheels. However, we will not discuss these issues in detail here.

The experiments we will present in Sections 3 and 3 use actual telemetry data from NASA Ames’ Marsokhod rover.
The Marsokhod is a planetary rover built on a Russian chassis that has been used in field tests from 1993-99 in Russia,
Hawaii, and the deserts of Arizona and California. The rover has six independently driven wheels, and for the
experiments we present here, the right rear wheel had a broken gear, and so rolls passively. The Marsokhod has a
number of sensors. including ones that measure body and arm geometry, and battery current. We will restrict our
attention to diagnosing the state of the broken wheel, and will therefore use only data from the wheel current and wheel
odometry sensors. We will treat euch wheel independently in the diagnosis. For each wheel, we have a model, taken
from [7]. with the following characteristics (in tact, the model ot each wheel is identical):

e M consists of 23 system modes, including for example an le state, the wheel current rising alter a command

is given, uniform speed driving, and a total of 14 different fault states.
eV consists of variables for the wheel current and wheel speed, and the derivatives of current and speed.

e Tisa tairly sparse matrix, with at most six successors for any given mode. The probability of 4 transition to a
mand.

fault state is 0.01 or less. We include 4 separate transition function for the start and end ot a comr

I Create a et ot i particies where cach particle o has stte p and owerehe o o0 s sampled randomtly

trom the mntial state distertbution, and oy =/
2 tor rach ume step. dos

£ For zach parucle p. do:
I Select a future state p.” tor p by sampling trom Prip p o, the Jdistrtbution over possible

future states 2iven by the model.
i, Re-weight p by muluplying tts werght by the probabihity ol the observations o given oo as

follows:
p'v=Prio] paps
h. Resample it new particles p, by copying the current particles where ¢ach particle p is added to the
new samples with the following probability:

’

Pr(pvzpizL
PN

Figure {: The particle tiltering algornthm.

e The state equations in £ consist of the previous value plus a constant term and noise. The noise is Gaussian
with standard deviation in the range 0.001 to 1.0, and the equations are independent for each state variable.

e The equations in O are independent for each variable (but vary depending on the mode), and consist only of
the variable's value plus Gaussian noise. Again, the standard deviation varies from 0.001 to 1.0.

3 PARTICLE FILTERS

A particle filter approximates an unknown probability distribution using a weighted set of samples. Each sample or

particle consists of a value for every state vaniable, so it describes one possible complete state the system might be in.
As observations are made, the transition function is applied to each particle individually, moving it stochastically to a
new state based on its current dynamics, and then the observations are used to re-weight each particle to reflect the
likelihood of the observation given the particle's new state. In this way. particles that predict the observed system
performance are highly weighted, indicating that they are in likely states of the system [6]. The major advantage of
particle filters is that their computational requirements depend only on the number of particles. not on the size of the
system. This is of huge importance to us as it allows us to do diagnosis in an anytime fashion: increasing the number of
particles when there is computation time available, or when we suspect a fault has occurred, and decreasing the number
when other operations require the processor. To implement a particle filter. we require three things:
o A probability distribution over the initial state of the system.
e A model of the system that can be used to predict, given the current state according to an individual particle. a
possible future state of that particle. Since T is stochastic, and £ includes noise terms. the predictive modet
selects a new state for the particle in a Monte Carlo [8] fashion. choosing by sampling from the probability

distribution over possible tuture states.
e A way to compute the likelihood of vbserving particular sensor values given a state. In our case, this is given

by the observation function O.

ive step, where a new state is calculated in a

The particle tiltering algorithm is given in Figure 1. Step (i) is the predict
ii). [n the case of

Monte Carlo way for each particle, and this new state is then conditioned on the observations in step |
our rover model. the initial distribution is uniformly in the fdle mode, in which there is no power (0 any of the wheels.
The predictive step is performed by applying T to each particle, and then appiving the appropriate equations from £ to
the state variables, sampling values from the Gaussian error terms. Once the particles have been re-weighted. we can
then calculate the probability of each mode simply by summing the weights of the particles in the mode.

Problems with particle filters for diagnosis

Unfortunately, there are a number of difficulties in applying particle filters to diagnosis problems. [n particular, the
filter must have a particle in a particular state betore the probability of that state can be evaluated. If a state has no
particles in it, the assumption is that its probabilitv of heing the true state of the system is zero. This is 4 problem in
diagnosis problems hecause the transition probabilities to fault states are typically very low, so particles are unlikely 0
end up in fault states during the Monte Carlo predictive step. Without a particle in a fault state. that state will continue

to be nen zero probabihity of aving accurred, evenot no other state s dorg 4 vood jub ot predicang. This stuation s

Known Iy sample inpoversfunent.

2 ilustrates this problem. Each zraph shows the most Tikely modes that the wheel is 1, shown over part ot one

Fraure 2
of the (rals 1 wvhich the aheel s imtially e, and then atstep 1215 commanded to Jdrive forward at a fixed speed. The

zraphs on the lett show the performance of Wheel 1, which 15 operating nomimallz. The traphs on the right show the
pertormance ot Wheel 6, which s faulty. tn the top line. the probability of the fault occurring is 0.1 rather than s true
value of 0.01. Here the tault is quickly detected in Wheel 6. The middle tine of araphs shows the same situation with the
fault probability set to 0.05. Here there is a sigmficant detay hetween the wheel beiny commanded, and the detection of
the fault. In the bottom line of graphs. the fault probability is set to its true value. and in this case the tault 1s not
successtully detected because insutticient particles enter the tault state. One might expect that once a particle enters the
Yault state its weight would be high since it would predict well. and at the re-sampling step it should lead to several new
particles being created. Untortunately, this did not occur in this situation because although some particles did enter the
fault state. their continuous parameter values did not agree with the observations well, so they still had low weights. The
continuous parameters Jid not match because each of the particles that entered the tuult state came from the
CommundedRunning state, in which the current and wheel speed are expected to be much higher than the observed
values. [n the next section we examine two techniques for overcoming this problem and ensuring that faults are detected

even when their probability of occurring is low.
4 USING DOMAIN KNOWLEDGE TO DIRECT THE PARTICLE FILTER

m is to increase the number of particles being used. Given
h is probably unrealistic. The data presented above used
ate on a 750MHz Pentium 3. This is probably
d a rover—the time available for diagnosis is

The simplest solution to the sample impoverishment proble
the constraints imposed on on-board systems, this approac
10,000 particles per wheel, and runs in Java in approximately 0.5s per upd
at the upper limit of the number of particles we could expect to use on-boar
longer, but the computation will be much slower. Thus running with ten times as many particles (which is roughly
equivalent to multiplying the fault probability by ten) is probably impractical on the rover, and even 10.000 particles
may be unrealistic as the model gets more complex. This could be somewhat overcome by only increasing the number
of particles when there is some evidence that the system is predicting poorly. [n order to achieve this, we need some
measure of when this occurs. The obvious measure is to look at the total weight of the particles after conditioning on the
observations. If no particles are predicting the observations well the total weight should drop. Unfortunately, in practice
this is rarely useful because there are a number of other possible causes for this behaviour. For example, particles
moving trom a state in which there is high confidence in the sensor readings to a state with more sensor noise will tend
to drop in weight even if they are still predicting the observations well. We see this in the Marsokhod model because the
idle mode has relatively lurge variance for the observation noise, whereas the CommandedRunning mode has smaller
variance. so the total particle weight increases when the system moves from the fdle 1o the CommandedRunning mode,

even for wheel 6 where CommandedRunning predicts the observations poorty.

Another way to reduce the likelihood of sample impoverishment is to bias the distribution of partictes in favour of states
which correspond to important faults. In this approach, the particle filter no longer approximates the true belief
distribution, but instead uses some oracle to identify “important” future states, and allocates some portion of the
particles to those states. The particle filter can then be thought of as a way of dynamically allocating our available
computation. Each system mode is assigned a fraction of the available computation time. in the form of a2 number of
particles. As in the standard particle filter, particles move from state to state via T and £, and via the resampling step,
but the oracle ensures that every state it considers important is assigned at least some small fraction of the available
computation. This ensures that if a transition to one of the important states occurs, there will be particles in the state so
its probability will be non-zero. It the particles in one of these states predict the observations well {which they should if
it is the true state), their weight will then increase. at which point the normal operation of the particle filter increases the

number of particles in the state.

The question that remains is how to implement the oracle. For a complex system such as a planetary rover, with many
components each with its own set of possible fwlure modes, there are exponentially many possible failure modes, 50
this is a non-trivial problem. However. one approach that seems promising is to use 2 traditional model-based diagnosis
system such as Livingston [1]. Livingston operates much more quickly than hybrid approaches because it does not
consider the continuous dynamics of the system. Instead. it uses a discrete abstraction of the problem. and tries to
identity likely states that are consistent with the vbservations. We pointed out in the introduction that this approach s
not in general suitable for diagnosing rovers, but it is suitable tor the purpose of identitying likely system modes to

Wheel 1: P(fauit) =0.1 Wheel 6:P(fault) = 0.1

10000 10000 AROUHIOIERONIOMHMONMOMINONC
. 8000 - 8000 ;
- 3000 $ 5000 -
|+ 4000 - ;4000
<2000 - < 2000 -

0 0
TR a5 %% 8 -~ 228 55 3 % 8
dle | dle
....... PrematureAction 3 -+« ... CommandedSpeedHising
.. .X- - - CommandedSpeedRising ‘ —¢— CommandedRunnin
—— CommandedRunning - -X- - - Gear&EncoderFaultRunning

Wheel 1: Prob(fault) = 0.05 Wheel 6: P(fault) =0.05

i g
3 | ’ :

K | i
| -
f -~ ®m 2 8 =5 2 2 8 |
! C_T DA SN ~ ® > v
) —ae—Udle ‘ - = N M M s T 0 .
‘ PrematureAction | die v ;
: - - -® - - CommandedCurrentfising J —— %rm’anded dRising |
! —3—— CommandedSpeedRising | - - - X- - - CommandedHunnin |

....... CommandedRunning .« ... -. Gear&BEncoderFaultRunning |
Wheel 1: P(fault) =0.01 " ? Wheel 6: P(fault) = 0.01
o
| ;
i
| g
t [
|

-~ 2 285529 8| T 228 s B 2SS
| idle idle
AR FrematureAction R PP rmandedageedﬂismg
; —— CommandedSpeedRising | - - -X- - - CommandedRunnin)
| -+ -X- - - CommandedRunning | —3— Gear&EncoderfFautRunning

Figure 2: Particle filter results for wheels | (nominal performance) and 6 (fauity, with a broken gear). In the top row

the probability of the fault is ten times its true value, in the middle row it is 35 times. and the bottom row has the true

fault probability. The fault is easily detected in the top row. detected after a delay in the middle row, and not detected
in the bottom.

apply some computation in. By asking Livingston to provide a number of candidate hypotheses that explain the
observations, we can with high probability be confident that the true mode is in one of the hypotheses. We then assign
some computation to all of the modes consistent with the hypotheses. The speed of the qualitative system should mean
that using the oracle would not signiticantly impact computation, which still should depend only on the number of
particles. The integration of Livingston with the particle filter approach is currently work in progress. as it adds a
number of additional complications including building an additional system model. and ensuring that the discrete and
hybrid models agree with one another and can casily be translated back and torth.

10000

10000
3000
3000 _ 3000
2000 3 000
5000 2 S
o
3000 -
400!
4000 - 3 0
a
3000 - 2000 -
2000
1000 - 0
: -~ 228553 2 8
Step
—dle dle
~—p— FrematureAction ———— PrematureAction

.. .4 .. CommandedFatBefore ‘ .. .4 .. CommandedFatBetore
....... CommandedSpeedRising ;CommandedSpeedfising

—3¢— CommandedRunning i —— CommandedRunning

- - -%- - - Gear&EncoderFauttRunning -« - X- - - Gear&EncoderFaultRunming

Figure 3: Results for particle filter with bias. All states with > 25% probability were used as starting points for the
forward search, and 0.5% of the particles were assigned to each of the found states. On the left are results for wheel
1, and on the right for wheel 6.

For simpler systems such as the Marsokhod wheel diagnosis we have used in this paper, the Livingston-based approach
is unnecessary. Instead, we can use an oracle based on forward search from the current high-probability states. Since
each system mode in this model has at most six possible successors, and there are typically only two to three high
probability modes at any time (often one of these succeeds another), we find in practice that in most cases a simple one-
step look-ahead search adds fewer than five modes to those that already contain particles.

5 RESULTS

The results we present here are based on the Marsokhod model we described in Section 2. Dr. Rich Washington
supplied the model and the data, which came from his work on using Kalman filters for rover diagnosis {7]. The only
changes made to the model were to make it suitable for use with a particle filter: no changes were made to model
parameters or transition probabilities. To demonstrate our approach we use a small piece of one of the telemetry data
files (the same piece used in Section 3) in which the rover is initially idle, and then a drive command is issued, resulting
in an increase in current to each wheel, followed by a corresponding increase in speed, and then a constant speed. As
before, wheel 6 is faulty, with a broken gear (this corresponds to the GeardEncoderFaultRunning state in the model).

Figure 3 shows the results for the biased particle filter. For these results we used single step forward search from all
states with probability > 0.25 to select the set of bias states. Each of these states was then guaranteed to receive at least
0.5% of the total number of particles at each re-sampling step. The left hand graph is the probabte states for Wheel 1, as
before. Like the graph in the bottom row of Figure 2, the PrematureAction state was given high probability before step
13. This state appears in situations where the effects of an action are seen before the signal to perform the action is seen,
due to problems with the rover telemetry. In this case it is a spurious result due to the model of the /dle state not
allowing sufficient noise in the observations. A small adjustment to the model would remove this problem, which is
only present in the data for two of the wheels. The right hand graph shows the same data for Wheel 6. In this case, the
fault state is found at step 20. seven steps after the command to drive the wheel was observed. This compares
favourably with the results in Figure 2, where the fault was detected three steps after the command in the top row (ten
times probability), and 19 steps after it in the middle row (five times probability).

6 DISCUSSION AND RELATION TO OTHER WORK

One closely related piece of work is Verma et al’s decision-theoretic particle tilter [9]. The problem they are Attempting
to solve is essentiafly the same one we are interested in, but their approach is to assign a utility to every state and use the
utility o change the distribution they draw the particles from. Effectively, this is equivalent to altering the transition
function so that the probability of 4 transition from state s with utility wiso o state v with utility uty) hecomes

Jur o Thas has o amilar ctiect to mereasing the probabihites as we did me Frewre 2

ko wuch as the one we have presented bere, the approaches seem zery similar. However. tor more complex

Proy CForrelativeds simple

dragnoses s
ke e believe that usimy 1 diserete dragnosis ool as an oracle o direct the computation of the particle liter will

Alow s 1o make more sttective use of the avadable computation than the uuhit -hased method. which will increase the
probability o transittons o 1 potentially very ngh number ol Tault States. espectally as any reasonable utihity function

would ive all tault states a igh atlity.

Another related etfort is the work of Washmgton [T} that applies Kalman Filters o tns problem. In this work, the
continuous Jvnamics 10 2ach mode s tracked by a set of Kalman filters. The main problem with this approach s that
the number of filters tends to increase over Lme hecause 2ach time a transition 15 made (o 4 state the mutial condttions
for the tilter are different. and filters with different inittal conditions cannot be combined. This is not a problem for
particle tilter-based approaches because the particle filters can represent arbitrary distributions over the parameter
values. so particles entering a state with two different sets of initial conditions will form a bi-modal distribution. As we
said above. we used the model and data trom this paper in our own work. We see fewer errors in the mode identificaton
with our approach than in Washington's paper, aithough we are sometimes slower to identity the fauit, and our
computational requirements are somewhat higher.

Lemer et al [10] use linear-Gaussian Bayesian networks to represent hybrid system, and perform diagnoesis by
computing the true belief state at every step. This avoids the problems we have described, which are directly caused by
the approximation approach. However, the computational requirements are far too high to be used on-board a rover.

As we said in the introduction, this is a work in progress. There is still much work to do on the problem of how to
integrate a model from Livingston with this system to act as an oracle. We have demonstrated that a simple look-ahead
search pertorms quite well, but this is clearly inadequate for large diagnosis problems. We are also examining a number
of other approaches to improving diagnosis with particle filters, such as backtracking when prediction is poor, and re-
sampling past states based on observations that occurred more recently. Finally, we are investigating how a diagnosis
system of this type would fit with the CLARALy rover architecture [11] being used for future NASA missions to Mars.
We are actively involved in developing these approaches to be integrated with the Mars'07 mission.

We would like to thank Dr. Richard Washington for providing the model of the Marsokhod rover we used for this
paper, along with the telemetry files from his field tests with the rover. This work has also been influenced by

discussions with Dr Washington, Vandi Verma, and Dr. Robin Morris.

REFERENCES

({] B. Williams and P. Nayak, “A Model-based Approach to Reactive Self-Configuring Systems” Proceedings of the Thirteenth
National Conference on Artificial Intelligence and Eighth nnovative Applications of Artificial Intelligence Conference. AAAI Press,
Portland OR. 1996.

{2] N. Muscettola, P. Nayak. B. Pell and B. Witliams, “Remote Agent: To Boldly Go Where No Al System Has Gone Betore.”
Aruficial Intelligence 103(1-2), August 1998.

{3] D. Bernard. G. Dorais, C. Fry, E. Gamble, B. Kanefsky.
Rouguette, B. Smith and B. Wiiliams, "Design of the remote agent cxperiment
Aerospace Conference, March [998.

(4] A. Doucet, "On Sequential Simulation-Based Methods for Bayesian Filtering.” Technical Report CUED/F-INFENG/TR.310.
Department of Engineering, Cambridge University, 1998.

(5] M. Isard, A. Blake, "CONDENSATION: Conditional Density Propagation for Visual Tracking.”
Computer Vision, 1998.

(6] D. Fox, W. Burgard, S. Thrun.
{ntelligence, 11,1999,

{7] R. Washington, "On-Board Real-Time State and Fault denufication for Rovers.” In Proceeding
on Robotics and Awomation, April 2000.

{8] W.R. Gilks. $. Richardson and D.J. Spigethalter, eds. Markov Chain Monte Carlo in Practce. CRC Press, 1996.

(9] V. Verma, J. Langford and R. Simmons. “Non-Parametric Fault Idenuficauon for Space R..ers.”
International Svmposim on Arafical intelligence and Roboucs in Space 11ISAIRASY, June, 2001

[10] U. Lerner. R. Parr, D. Koller. G. Biswas, "Bayesian Fault Detection and Diagnosis in Dynamic Systems.” [n Proceeding, | 7th
Nanonal Conference on Artificial tnretligence, July 2000.
[11] R. Volpe. L.A.D. Nesnas, T. Estlin, D. Mutz. R. Petras. H. Das. "The CLARAty Archuecture for Rubouc Autcromy.”
Proceedings of the 2001 1EEE Aerovpace Conference, Big Sky Montana, March 10-17 2001

J. Kurien, W. Millar, N. Muscettola, P. Nayak, B. Pell. K. Rajan, N.
for spacecraft autonomy.” [n Proceedings of the IEEE

[nternanonal Journal of

“Markov Localization for Mobile Robots in Dynamic Environments.” Journal of Arapical

v IEEE Internanonal Conrerence

